
Absence of true critical exponents in relaxor ferroelectrics: the case for nanodomain freezing

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys.: Condens. Matter 18 L523

(http://iopscience.iop.org/0953-8984/18/41/L03)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 14:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/18/41
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 18 (2006) L523–L526 doi:10.1088/0953-8984/18/41/L03

LETTER TO THE EDITOR

Absence of true critical exponents in relaxor
ferroelectrics: the case for nanodomain freezing

Wolfgang Kleemann

Angewandte Physik, Universität Duisburg-Essen, 47048 Duisburg, Germany

Received 28 August 2006
Published 29 September 2006
Online at stacks.iop.org/JPhysCM/18/L523

Abstract
Scott’s (2006 J. Phys.: Condens. Matter 18 7123) recent review of Kleemann
et al’s (2002 Europhys. Lett. 57 14) critical exponents of strontium barium
niobate is shown to be misled by erroneous input parameters. Although the
observed set of exponents reflects, indeed, the absence of true three-dimensional
(3D) random-field Ising model critical behaviour, it cannot be compatible with
the proposed domain wall model in d = 2.5 dimensions or with Levanyuk
and Sigov’s (1988 Defects and Structural Phase Transitions (London: Gordon
and Breach)) defect model. As was argued independently by Kleemann et al
(2006 Phys. Rev. Lett. 97 065702), it is rather in agreement with the pure two-
dimensional (2D) Ising model.

The claimed discovery of the first materialization of the ferroic three-dimensional (3D) random-
field Ising model (RFIM) system by the uniaxial relaxor ferroelectric strontium barium niobate
(SBN61, Sr0.61Ba0.39Nb2O6, and its Ce3+-doped descendants) [1] left open the question of
how to understand the critical exponents observed. Hence, not unexpectedly, a controversial
discussion about their very relevance immediately started and recently culminated in a very
involved discussion by Scott [2], who (i) stated that the exponents observed [1] cannot
reflect true equilibrium critical behaviour, and (ii) simultaneously proposed two alternative
interpretations. He proposed either possible critical behaviour in d = 2.5 dimensions on
domain walls or an agreement with Levanyuk and Sigov’s [3] defect model.

In this letter we confirm on the one hand that the first statement is, indeed, correct. On
the other hand, however, we show that the above discussion was partially misled by erroneous
citations and that the models proposed are not compatible with the experimental observations.
Our arguments are based on very new dielectric and scanning probe results [4], which suggest
that SBN freezes into nanopolar regions at temperatures close to T = Tc. Consequently, we
rather propose a pure Ising model in d = 2 dimensions to account for the criticality remaining
active within the interfaces between the polar nanoregions [4].

Table 1 shows a list of the critical exponents α, β and γ measured for SBN61 using
different methods, as indicated. They are compared with those obtained for the diluted uniaxial
antiferromagnet Fe1xZnx F2 in a homogeneous axial magnetic field (DAFF), which is known to
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Table 1. Static critical exponents measured for the relaxor SBN61 and the DAFF system
Fe1−x Znx F2 in comparison with theoretical values for the 3D RFIM and the 2D Ising model.

Experiment Theory

Critical exponent Relaxor SBN61 DAFF Fe1−x Znx F2 3D RFIM 2D Ising

Specific heat, α −0.02 ± 0.02 [4] ≈0 [6] −0.63 ± 0.07 [9] 0 [14]

Order parameter 0.13 ± 0.02 SHG [4] 0.16 ± 0.02 [7] 0.017 ± 0.005 [10] 0.125 [15]
β 0.14 ± 0.03 NMR [5] 0.02 ± 0.01 [11]

Order parameter 1.85 ± 0.15 [1] 1.58 ± 0.13 [8] 1.7 ± 0.2 [12] 1.75 [14]
susceptibility, γ 1.5 ± 0.2 [13]

belong to the same universality class as the RFIM [16]. While the exponents of experimentally
realized RFIM systems (SBN and SBN:Ce3+) come close to those obtained on the prototypical
DAFF system Fe1−xZnx F2, a comparison with theoretical values for the 3D RFIM in table 1
reveals significant deviations. It has to be noticed that the latter values are still a matter of
debate and only those from the most recent sources are listed. Beyond errors, however, serious
discrepancies arise in particular for the exponents of the specific heat, α, and of the order
parameter, β . The values α ≈ 0 and β ≈ 0.13–0.16 extracted from the experiments contrast
sensitively with α ≈ −0.6 and β ≈ 0, according to theory and simulations. Much better
agreement is stated when comparing the experimental results with those of the unperturbed
(‘pure’) 2D Ising model, whose exact critical exponents have been well known for a long time
(table 1). Comparison of the experimental values of the exponent γ between experiment and
theory (values depending significantly on the random field distribution!) does not allow for an
unambiguous distinction between 3D RFIM and 2D Ising.

This surprising coincidence has been discussed for the DAFF exponents in the 1980s
and the seeming ‘reduction of dimensionality’ became a matter of heavy debate among
theoreticians [17]. One major discovery was the so-called violation of hyperscaling, which
explicitly connects the critical exponents with the spatial dimension d . A new scaling exponent
θ ≈ 1.5 was introduced for the temperature at the T = 0 fixed point [18, 19], which is now
generally accepted. However, this rigorous result could also not solve the above discrepancies.
In other words, a ‘projection’ from the ‘3D random-field’ to the ‘2D pure’ Ising model has
never been justified on any serious theoretical ground.

Only very recently we proposed that the long-standing puzzle can be solved when
considering the observed self-organized subdivision of the ferroelectric RFIM systems SBN
and SBN:Ce3+ into metastable (‘frozen’) domains embedded in a network of quasi-2D
interfaces [4]. While the ‘domains’ experience polar long-range order already above the phase
transition temperature, Tc, by virtue of the spatial fluctuations of quenched random fields, the
‘interfaces’ are subject to quasi-staggered fields, which do not give rise to ferroic correlations
on a mesoscale. A similar subdivision, albeit only for temperatures T < Tc, was considered by
Middleton and Fisher [10] in order to interpret some of the results of their simulations for the
RFIM. Quite naturally, we proposed that the apparent 2D Ising criticality actually takes place
on the 2D subspace of the interfaces. It is thus a consequence of the giant critical slowing-down
of the RFIM [19] which finally hampers the observability of true 3D RFIM critical exponents
when approaching Tc on ‘normal’ laboratory timescales. For example, we have proven the
stability of frozen bulk domains at reduced temperatures as large as T/Tc − 1 ≈ 0.02 on a
timescale of τ ≈ 103 s by scanning piezoforce microscopy (PFM) [4].

Virtually simultaneously with our publication [4], submitted on 12 May 2006, alternative
interpretations of our experimental critical exponents were proposed in a paper by Scott [2],
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submitted on 16 May 2006. Basically, he also comes to the conclusion that true critical
behaviour might be unobservable in the RFIM owing to its tendency to become stuck
in metastable configurations. In order to ‘understand’ the observed exponents within the
framework of an extensive scaling analysis, he first proposes another effective reduction of
symmetry on the basis of a domain wall model with a fractal dimension d = 2.5 without
justifying or explaining, however, the origin of domain walls at T > Tc. His second proposition
refers to a defect model due to Levanyuk and Sigov [3]. It is easily seen that both of these
propositions fail in reproducing our critical exponents. In particular, the unanimously reported
value α ≈ 0 [4, 6] disagrees sharply with all the values, α > 0, quoted in table 1 of [2]. Also,
the value β ≈ 1/8, as essentially confirmed by all of the pertinent experiments [4, 5, 7], lies
far below the range offered by Scott’s models [2], 1/4 � β � 1/2. We note that the low value
β = 0.06 argued by Scott [2] to be one of our early experimental results was in reality another
theoretical result [20]1.

The Levanyuk–Sigov model [3] was cautiously favoured [2], since its low value of the
critical isotherm exponent, δ = 2, seems to come close to an exponent δ = 1.53 ±
0.15 published by ourselves [21]. However, this comparison is a matter of a serious
misunderstanding. The critical isotherm exponent, δ, which Scott has in mind was never
measured in SBN because of extreme equilibration problems arising at Tc [23]. In reality,
the above-cited exponent is the size distribution exponent of polar domains in the ferroelectric
state of SBN [21]. Unfortunately, it bears the same name, where δ = 1.53 enters the
formula N(A) ∝ A−δ , N being the number of domains and A the domain cross section [21].
Another misunderstood number used in Scott’s discussion [2] is the ‘fractal dimension of the
ferroelectric domain walls’ in SBN. On the occasion of IMF-11 (Iguazu, Brazil, August 2005),
I introduced a scaling ansatz for the density of states of pinned domain wall segments with
length L, g(L) ∝ L−x . A relationship of the exponent x to the fractality of the domain wall
was mentioned and published [22], where the emerging values, 1 � x � 1.7, might be taken
as a ‘fractal dimension’ of the domain wall contour line. This ‘fractal dimension’, referring to
the projection of the wall onto the plane of observation, must, however, not be confused with
the fractal dimension of the domain wall area, which is undoubtedly d∗ � 2.

In conclusion, Scott’s [2] discussion of the hitherto poorly understood experimental critical
exponents of the first experimental realization of the ferroic 3D RFIM, the relaxor ferroelectric
SBN [1], independently confirms our result [4], viz. that asymptotic criticality is unobservable
due to severe thermal equilibration problems. His inferences, however, with respect to a
possible alternative physical model for the metastable system are not convincing and suffer
from flaws based on input data taken incorrectly from the literature. Instead, we propose
another more plausible solution of the RFIM criticality enigma on the grounds of recent
structural investigations, which suggest that the criticality of a metastable 2D Ising model is
involved [4].
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